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We examine the development of a thermal plume originating from a localized heat
source using direct numerical simulation. The Reynolds number of the plume, based
on source diameter and the characteristic buoyancy velocity, is chosen to be 7700,
which is sufficiently large so that the flow turns to a fully turbulent state. A highly
resolved grid of 622 million points is used to capture the entire range of turbulent
scales in the plume. Here at the source, only heat has been added with no mass or
momentum addition and accordingly the vertical evolution of the mass, momentum
and buoyancy fluxes computed from the simulation have been verified to follow
those of a pure thermal plume. The computed vertical evolution of the time-averaged
centreline velocity and temperature are in good agreement with available experimental
measurements. Investigation of the time evolution of the plume shows periodic
formation of vortex ring structure surrounding the main ascending column of hot
fluid. The vortex ring forms very close to the heat source and even at formation it
is three-dimensional. The vortex ring ascends with the plume and at an elevation of
about two diameters it strongly interacts with and destabilizes the central column and
subsequently a complex turbulent flow arises. Thus, relatively laminar, transitional and
fully turbulent regimes of the plume evolution can be identified. In the fully turbulent
regime, complex three-dimensional hairpin-like vortex structures are observed; but
vestiges of the coherent vortex rolls that form close to the source can be observed
in the turbulent statistics. It is shown that local entrainment consists of contraction
and expulsion phases. Such instantaneous mechanisms drive the entrainment process,
and the instantaneous entrainment coefficient shows large variation in both time and
space with local values up to three times higher than the average entrainment level.
Such findings support the view that entrainment mechanisms in plumes should be
considered from an unsteady point of view. Movies are available with the online
version of the paper.

1. Introduction
Buoyant plumes play a significant role in various fluid flows of environmental

and technological importance. Accordingly, analytical, experimental and numerical
works have been dedicated to the study of buoyant plumes. In the turbulent regime,
buoyant plumes exhibit highly complex behaviour (Georges, Alpert & Tamanini 1997;
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Bastiaans et al. 2000; Pham, Plourde & Doan 2005), which remains difficult to fully
understand, analyse and predict. One of the main difficulties stems from the highly
unstable nature of the flow, and the resulting rapid amplification of disturbances
leading to abrupt transition (Nakagomeka & Hirata 1976). Such behaviour implicitly
forces investigators to resort to detailed characterization through experimental
measurements. For instance, Shabbir & George (1994) reported comprehensive
measurements in a round buoyant plume that was generated by forcing a hot air jet
up into a quiescent environment. Their experimental measurements, as well as those
obtained by Nakagomeka & Hirata (1976) to quote just a few, allow us to compare
experimental data with analytical theory. Taylor (1958) put forward the hypothesis
that a turbulent buoyant element expands at the expense of the quiescent surrounding
fluid through entrainment of exterior fluid. Morton, Taylor & Turner (1956) proposed
similarity solutions of mean velocity and temperature in the turbulent region and
Turner (1969) extended this analysis to plumes arising from a source of buoyancy.

The theoretical model of Morton et al. (1956) is based on a (virtual) point source
assumption. However, as underlined by Fannelop & Webber (2003), while the point
source model may suffice to describe plumes in regions high above the source, it is
inadequate closer to a finite-sized heat source. Another limitation of the classic model
is the use of the Boussinesq approximation, i.e. density variations are taken into
account only in the buoyancy driving force. Rooney & Linden (1996) put forward the
hypothesis that greater density differences primarily influence the plume radii, while
the plume velocity is largely unchanged in comparison with the one obtained under
the Boussinesq assumption. However, Fannelop & Webber (2003) suggest that such a
result is strongly linked to the use of the Ricou & Spalding (1961) model. The general
solutions obtained by Fannelop & Webber (2003) for their model plumes from finite-
area sources exhibited a converging–diverging necking behaviour and were shown
to be in reasonable agreement with the available experimental data from Liedkte &
Schatzmann (1997) and Billeter & Fannelop (1989). However, it is important to point
out that availability of accurate measurement close to a finite-sized heat source, either
by detailed experiments or through numerical simulations, is essential to a more
complete understanding of turbulent thermal plumes and their theoretical modelling.

The role of coherent structures in a turbulent plume and their relevance to
the entrainment process have been actively investigated in recent years (Bhat &
Narasimha 1996; Basu & Narasimha 1999). They conducted series of experiments as
well as numerical simulations with jets and plumes subjected to volumetric heating
to show that latent heat release plays a key role in local reduction of the entrainment
rate. Sreenivas & Prasad (2000) established a model designed to explain thoroughly
the main mechanisms inducing entrainment. Addition of off-source buoyancy creates
a stable density stratification which resists the tendency of eddies to turn over. Their
model demonstrates that, in the case of an ordinary plume wherein the addition of
buoyancy is confined to the source, decreasing buoyancy along the downstream direc-
tion results in an unstable stratification and a baroclinic torque that enhances vorticity
production. Cortese & Balachandar (1993) observed that in turbulent Rayleigh–
Bénard convection, the thermal plumes are invariably spiralling. The spiralling nature
of the plumes is due to vertical vorticity generated through a the breakage of axisym-
metry and its intensification through a buoyancy-induced stretching mechanism.

Numerical simulations of jets and forced plumes are more common (Basu &
Narasimha 1999; da Silva & Métais 2002) and comparatively speaking, computations
of pure plumes are relatively limited. Stability of thermal plumes and their instability
mechanisms have been investigated with two-dimensional simulations by Desrayaud &
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Lauriat (1993). Bastiaans et al. (2000) carried out direct and large-eddy simulations
of a pure thermal plume in a confined enclosure in order to highlight the transition
phenomenon. They considered a planar plume that results from a line heat source.
Numerical results obtained by Bastiaans et al. (2000) convincingly demonstrated that
shortly after a symmetry-breaking bifurcation, three-dimensional structures do appear
in the ascending flow.

Hunt & Kaye (2000) analysed the location of the asymptotic origin of positively
buoyant turbulent plumes with a deficit of initial momentum flux. To characterize
plumes, Hunt & Kaye (2000) introduced a source parameter Γ ∼ q2

0φ0/f
5/2
0 where q ,

f and φ are the mass, momentum and buoyancy fluxes while the subscript 0 refers
to the source condition. Thus Γ corresponds to a measure of the relative importance
of initial convective and thermal fluxes. Hunt & Kaye (2000) point out that plumes
are classified as forced buoyant (0 < Γ < 1), pure plume (Γ =1) or lazy (Γ > 1).

In this paper, we analyse the structure and statistics of a pure thermal plume from
a finite-sized heat source under a turbulent regime. We will consider the axisymmetric
configuration, where attention is focused on a conical plume resulting from a finite-
sized circular heat source. The present work thereby complements the planar geometry
studied by Bastiaans et al. (2000). Here the plume develops as a result only of heat
release at the finite-sized source on the bottom boundary with no mass or momentum
input. Consequently, the plume qualifies as a pure thermal plume. As we will see in
§ 3, the evolution of mass, momentum and buoyancy fluxes also satisfies the definition
of a pure thermal plume (Hunt & Kaye 2000; Fannelop & Webber 2003). Our
main objective in this study is to contribute to the detailed characterization of the
near source region in the case of a finite-sized heat source. In addition, in the fully
turbulent region, we focus attention on the role of coherent structures in driving
the plume dynamics and the entrainment process. Aside from Basu & Narasimha
(1999), no clear attention has been given to such structure–entrainment relationship.
The results to be presented are for a modest Reynolds number of 7700, where the
plume sufficiently above the source is subjected to a highly turbulent regime. A highly
resolved grid of 622 million points is used in order to convincingly resolve all the
relevant turbulent length scales.

Our paper is organized as follows. In § 2, we describe the problem, the governing
equations and the boundary conditions. Numerical data obtained are described in
detail in § 3. The main mechanism responsible for the destabilization of a pure thermal
plume is analysed. Finally, an identification procedure is applied in order to highlight
large-scale coherent structures that are located well above the source area and these
structures are then related to the instantaneous plume entrainment. The identification
of coherent structures has in fact allowed us to provide a plausible explanation for
the pulsating behaviour recently observed experimentally in thermal plumes. Finally,
conclusions are drawn in § 4.

2. Problem formulation
In this paper, we employ direct numerical simulation methodology to solve the low-

Mach-number weakly compressible conservation equations of mass, momentum and
temperature in a Cartesian coordinate system. The low-Mach-number approximation
is often employed in the context of combustion and results in the filtering of the
acoustic modes and the resulting equations are simpler than the fully compressible
equations (Majda & Sethian 1985; Cook & Riley 1996; Lessani & Papalexandris
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2006). The resulting equations are:

Dρ

Dt
+ ρ∇ · u = 0, (1)

ρ
Du
Dt

= −∇p − (ρ − 1)
ez

Fr2
+

1

Re
∇ · σ , (2)

ρ
DT

Dt
= ∇ ·

(
1

Re

µ

Pr
∇T

)
. (3)

In the above equations u, p and σ correspond to the normalized velocity vector,
pressure and viscous tensor, D/Dt is the substantial derivative operator, and ez is
a unit vector in the vertical direction. In our study, we have chosen the diameter of
the circular heat source, D∗, as the length scale, the characteristic buoyant velocity
of a fluid parcel, U ∗

0 =
√

g∗D∗(T ∗
s − T ∗

0 )/T ∗
0 , as the velocity scale, D∗/U ∗

0 and ρ∗
0U

∗2
0

as the time and pressure scales, where g∗ is acceleration due to gravity. Normalized
temperature T is defined as T = (T ∗ − T ∗

0 )/(T ∗
s − T ∗

0 ), where T ∗
s and T ∗

0 refer to
the source and ambient temperature, respectively. Note that the asterisk refers to
dimensional variables. The dimensionless parameters that appear in the governing

equations are Reynolds number, Re = ρ∗
0U

∗
0 D∗/µ∗

0, Froude number, Fr =
√

U ∗2
0 /D∗g∗,

and Prandtl number, Pr = µ∗
0c

∗
p/k∗

0 , in which ρ∗
0 , µ∗

0 and k∗
0 correspond to density,

viscosity and thermal conductivity, respectively, under ambient conditions. The
numerical results to be discussed below were carried out for Re, Fr and Pr equal
to 7700, 1.1 and 0.71, respectively. In the above equations non-dimensional density,
ρ, and viscosity, µ, are obtained by normalizing by their ambient values, ρ∗

0 and µ∗
0.

The gas viscosity is taken to be a function of temperature following the Sutherland
law, and is assumed to be a perfect gas. The variation in thermal conductivity and
c∗
p is assumed to be such that Prandtl number remains a constant. Note that in the

low-Mach-number assumption, viscous heating and adiabatic compression terms are
neglected in the energy equation. As regards the present pure thermal plume, a local
Grashof number can be defined in terms of dimensional distance above the heat
source as Gr(z∗) = (ρ∗

0/µ
∗
0)

2g∗z∗3(T ∗
s − T ∗

0 )/T ∗
0 (Bill & Gebhart 1975). Based on the

height of the computational domain, the largest local Grashof number (Bastiaans
et al. 2000) for the present simulation can be estimated as 2.2 × 1010, based on which
we expect a fully turbulent flow field.

The governing equations were solved using a finite-difference method with staggered
positioning of the variables in the computational grid. The spatial derivatives are
approximated by second-order-accurate central-difference approximation. A second-
order explicit Adams–Bashforth scheme was used for the time integration and a
Poisson equation was solved for pressure. The Poisson equation was solved using
fast Fourier transforms in the spanwise (y) and streamwise (z) directions and a
tridiagonal matrix system in the final x-direction. The computational domain was
chosen as 5D × 5D × 8D along the two horizontal and vertical directions, respectively,
and was discretized using a highly resolved Cartesian fine mesh of 720 × 720 × 1200
nodes. As the plume develops vertically, the region of intense turbulence is located
off-axis, thus requiring fine resolution not only along to the axis, but over an extended
cross-section around the axis. A Cartesian coordinate system with equi-spaced grid
provides uniform resolution over the entire cross-section. The alternative to simulating
a conical plume ascending above a cylindrical disk-shaped heat source is a cylindrical
coordinate system. Urbin & Métais (1997), Zhou, Luo & Williams (2000) and Cantero
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et al. (2006, 2007) have successfully used rectangular Cartesian grids to simulate
cylindrical jets, plumes and gravity currents.

In the present case, that of a pure thermal plume, the bottom boundary is consi-
dered to be a rigid no-slip no-penetration wall. At the centre of the bottom boundary
is the hot disk of unit diameter which is maintained at unit non-dimensional tempe-
rature. The remaining bottom boundary is assumed to act as an adiabatic wall. The
literature contains several studies devoted to turbulent forced plumes, where mass
and momentum input is specified at the inflow. It has been established (George et al.
1977) that a forced plume can undergo transition from a laminar to a turbulent state
with an abrupt breakdown of the potential core owing to rapid growth of disturbance
(Bastiaans et al. 2000). However, fluctuations must be introduced in the inflow in
order to promote transition (Urbin & Métais 1997; Stanley, Sarkar & Mellado
2001). As regards the pure thermal plume under study, to capture the fully turbulent
behaviour observed in the experiments under similar conditions (Pham et al. 2006a)
it is essential to introduce disturbance close to the heat source, for otherwise
the flow will fail to transition within the computational domain and will remain
unrealistically laminar. We disturb the flow with fluctuations added to the axial
velocity component by superimposing a white noise disturbance to the velocity at
the first nodes above the disk. The magnitude of disturbance added to the flow close
to the heat source is an important parameter that controls the onset and location
of transition. Several noise amplitudes were studied and the results presented here
were obtained with a 5 % noise amplitude added to the vertical velocity component.
At lower amplitudes of disturbance, the plume failed to become fully turbulent. At
higher amplitudes of disturbance, the transition location advanced closer towards
the source, but the characteristics of the fully turbulent region remained the same. A
simple convective boundary condition was imposed at the side boundaries in order
to allow entrainment and the convective boundary condition was also enforced at
the top to allow passive advection of the vertical structures out of the computational
domain without spurious reflection (Stanley et al. 2001; da Silva & Métais 2002).

The non-dimensional time step used in the computations is 2.5 × 10−3, which
satisfies both the stability and accuracy considerations. Initially, the flow is advanced
about 40 non-dimensional time units to allow the initial transients to exit the
domain. Once the statistically stationary state is established, time-averaged statistics
are computed by averaging over 60 non-dimensional time units, which roughly
corresponds to the formation of 20 thermally driven large-scale vortex formations.
This allowed for an accurate description of the vortex formations and their complex
development and interaction within the computational domain. A factor of particular
importance is that the present grid and time step are adequate to resolve accurately
the entire range of length and time scales down to the Kolmogorov scale (Stanley
et al. 2001). Specific care was taken through a posteriori investigations to check the
capacity of the proposed grid resolution to capture the smallest turbulent scales in
the simulated flow. To assess resolution, we tested several grid resolutions and results
from the highest resolution simulation are shown.

3. Results and Discussion
3.1. Vicinity of finite-sized source

First, it is essential to characterize the development of the ascending flow field from the
finite-sized heat source at vertical positions well above the source. Figure 1 shows the
radial profile of mean vertical velocity component, uz. All of them reveal a maximum
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Figure 1. uz radial profiles of mean vertical velocity component for several z and
evolution of b plume radius, deduced from Gaussian fitting, with z.

centred on the geometrical plume axis. In addition, as we move away from the heat
source, the velocity profiles are better approximated by a Gaussian distribution. It
can be observed for z = 0.1 that the vertical velocity profile reveals the presence of a
second off-axis maximum. Thus, the region very close to the heat source is subjected
to an intense flow development, and self-similarity is not reached. The presence of
such a second off-axis maxima has not been reported in the case of buoyant jets
and consequently appears to be specific to pure plumes. The presence of the off-axis
maxima will later be analysed in the context of unsteady flow development in the
vicinity of the heat source.

Even though the velocity profiles close to the source are not perfectly fit by a
Gaussian, in our case we obtain the best fit to the data of the form uz,c exp(−r2/b2),
where b provides a measure of the local radius of the plume. The vertical evolution
of the plume width, b, is also shown in figure 1. It should be pointed out that the
radial profiles of vertical velocity are displayed only at selected elevations, and much
finer data were used to generate the plume width profile. Despite the approximation
involved in the Gaussian fit, the vertical variation in b exhibits a necking phenomenon,
i.e. the plume begins to contract immediately above the finite-sized heat source and at
a finite elevation above the source, minimum plume radius is reached. Above such a
position, the plume begins to enlarge with elevation. Note that the radius of the plume
can also be estimated from thermal fields (not shown) and although not identical, the
estimates from the velocity and temperature distributions were found to be relatively
close.
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Figure 2. Change of mean velocity uz,c and temperature T̄c along the plume centreline.

The changes in velocity and temperature along the centreline are shown in figure 2.
The vertical plume velocity along the plume axis begins to increase immediately above
the source to reach a point of maximum velocity and above this point the plume
decelerates while vertical velocity along the centreline monotonically decreases. In
figure 2, experimental data extracted from Pham et al. (2006a) are likewise plotted.
Numerical and experimental data show reasonable agreement both in magnitude
and in the location of the maximum centreline velocity. A −1/3 power law can be
observed away from the source as expected in theoretical prediction (Morton et al.
1956). Similar trends may be put forward for the change of temperature along the
centreline. In the immediate vicinity of the heat source, numerical predictions are not
as close to experimental data. According to Pham et al. (2006a), the heat source in
their experiment was not flush mounted, which may have influenced the ascendant
flow-field development.

The plume width as shown in figure 1 qualitatively resembles the theoretical result
with a finite-sized source (Fannelop & Webber 2003). For quantitative comparison, we
have redefined the plume width as b̃(z) =

√
q(q + φ)/f , where q, f and φ are the mass,

momentum and buoyancy fluxes. In figure 3 we plot b̃(z) as a function of z/L, where
the length scale is defined as (φ2/g)1/5. The simulation results are compared with the
theoretical prediction of Fannelop & Webber (2003) and experimental measurements
of Liedtke & Schatzmann (1997). As expected, we observe the computed buoyancy
flux to be conserved with height from the source. The computed mass and momentum
fluxes were plotted on a q2 vs. f 5/2 plot (figure 3). As shown by Fannelop & Webber
(2003), with the use of the Ricou & Spalding (1961) entrainment model, we find:

q2 = q2
o +

[
8α

5gφ

]
f 5/2, (4)

in which qo and α correspond to mass flux at the source (here qo =0 for a pure
thermal plume) and the entrainment coefficient, respectively. The theoretical linear
relation between q2 and f 5/2 is also plotted in figure 3 and although not perfect,
the comparison is acceptable. The numerical data exhibit a nonlinear dependency
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Figure 3. Numerical plume radius b̃ normalized by buoyant length scale L =(φ2/g)1/5

evolution with regard to z/L and comparison with Fannelop & Webber theoretical model
(line) and experimental results extracted from Liedtke & Schatzmann (1997). (b) f 5/2 vs. q2

extracted points from DNS and comparison with the analytical model from the Fannelop &
Webber model.

of q2 vs. f 5/2 in the vicinity of the heat source. According to Fannelop & Webber
(2003), comparison of data with theory should be done carefully, since analytical
models are based mainly on arguments of self-similarity, which does not hold in
the vicinity of a finite-sized heat source. Also, they show that different theoretical
results are possible depending on the closure used for entrainment, and the self-similar
power laws obtained with the Ricou & Spalding (1961) entrainment model is just one
example among others.

3.2. DNS assessment

An overall idea of the general three-dimensional organization of the pure thermal
plume can be gained from figure 4. The figure shows a three-dimensional isosurface
of the vorticity magnitude. Also shown on the x = −2.5 (plane a) and y = −2.5
(plane b) planes are contours of the x and y components of vorticity, respectively.
A concentration of vorticity may be observed at the bottom of the computational
domain close to z =0, i.e. in the vicinity of the heat source. At the time shown, vortices
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Figure 4. Instantaneous iso-vorticity modulus Ω = 3.0 and distribution of the two
components Ωx , Ωy in two planes at x = 0 (plane a) and y =0 (plane b), respectively.

appear to be directly connected to the heated surface whereas for 0.5 � z � 1.0, no
structures are observed (unlike for z > 1.0). Note that vorticity magnitude gllows us to
observe clearly the well-known classical regions of the plume, i.e. the laminar region,
development of vortex roll-up and transition to turbulence beginning for z > 1.0,
highlighted by increased vorticity concentration. In the far-field region (z > 4.0), a
more complex topology is displayed and intense vortical regions are mainly organized
as hairpin-shaped structures. These vortex structures principally populate in the
high-shear region that surrounds the main ascendant flow field. The hairpin vortical
structures clearly interlace with each other in a complex way as is typically the case
in a turbulent flow (Chakraborty, Balachandar & Adrian 2005).

Through Lagrangian simulations, Soteriou, Dong & Cetegen (2002) investigated
the near-field close to the source in order to underscore the unsteady dynamics of
buoyant plumes. They suggest an unsteady mechanism with a pulsation frequency
that is controlled by a Strouhal–Richardson number correlation, which implies that
the underlying instability is inviscid in nature with a frequency equal to

√
g/w, where

w is the nozzle width. Soteriou et al. (2002) describe the unsteady flow in the near field
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Figure 5. Distribution of temperature T in the region close to the heat source and its
evolution over time. (a) t = t0, (b) t0 + 1, (c) t0 + 2, (d) t0 + 3.

of a buoyant jet as exhibiting different forms of behaviour ranging from symmetric
shedding of a pair of line vortices to what appears to be asymmetric vortex shedding.
They emphasize that such instabilities are dependent on the flow history and on the
presence of perturbations. In addition, breakdown and vortex development generally
occur in the vicinity of the nozzle outlet, i.e. in the near source field.

To emphasize how a pure thermal plume behaves in the near field of the heat source,
figure 5 shows instantaneous contours of temperature on the vertical (x, z)-plane at
four different times separated by unit non-dimensional time unit (�t = 1). At t = t0,
a straight column of hot fluid is detected for z � 1.6, while just above this vertical
location, temperature contours exhibit a different behaviour. An abrupt breakdown of
the main column of hot fluid can be observed around z ∼ 1.6 and the instability of the
plume above this location results in enhanced mixing away from the plume axis. This
behaviour can also be observed in the vorticity contours shown in figure 4 (especially
in plane a) where the approximate axisymmetric columnar nature of the plume can
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be seen to exist close to the source, but rapidly breaks down into three-dimensional
vortical structures. In figure 5 at t = t0, incipient vortex roll-up very close to the heat
source can be observed as the pair of hot blobs of fluid located on either side of
the main column. These two structures observed on the (x, z)-plane are cut-sections
of a single vortex ring that develops around the main ascending column of fluid. In
the present case of a pure plume, buoyancy results in rapid upward acceleration of
the fluid immediately above the heat source, forming the primary ascending column
of fluid. The intense shear generated as the column ascends through the ambient
surroundings undergoes instability and rolls into a vortex ring. As can be observed
by t = to + 1, the vortex ring has moved up and is located at around z = 0.3. It still
surrounds the main column of hot ascending fluid and the upward motion of the
vortex ring is due to both self-induction and to buoyancy. At this time however, the
main coherent vertical column of fluid extends until z =2.2. At t = t0 + 2 the newly
formed vortex ring has convected up to a location z = 0.6 and the narrow column of
hot fluid downstream from the vortex ring seems to have destabilized in the process
of undergoing instability. By t = t0 + 3, the top of the coherent central column of
hot fluid extends up to z = 1.2, and the vortex ring, which has also moved up, lags
somewhat behind and the scenario appears similar to t = t0. It can be observed both
in figure 5 and through a comparison of planes a and b in figure 4 that the vortex
ring is not perfectly axisymmetric. From the incipient stages of formation, the vortex
ring has strong three-dimensionality which can be observed in the vorticity iso-surface
in figure 4. The three-dimensionality of the vortex ring grows with elevation and by
z ∼ 2 the vortex ring’s interaction with the primary ascending core of hot fluid is
sufficiently strong to render the column unstable as well. A time-dependent movie of
the three-dimensional vortex structure (available with the online version of the paper)
vividly illustrates this complex interaction process.

To clearly identify the nature of the instability arising from the heat source, figure 6
shows temperature as flooded contours overlaid on velocity vector plot on the (x, z)-
plane passing through the axis in the immediate neighbourhood of the heat source
(z � 0.3). Only the left-hand half of the plane is shown. In the region located close to
the heat source, the dominant vertical motion occurs close to the axis for x > −0.1,
while along the heat source (beginning at x = −0.5) a lateral flow lapping against the
source is entrained because of the vertical fluid displacement. As can be observed at
t = t0 an incipient instability of the lapping flow along the bottom boundary is seen
at around x = −0.3, where the velocity vectors are slightly displaced up and down,
and a bump in the thermal field is observed. The instability grows over time to form
a thermal plumelet, which is in fact a ring around the main column of ascending
hot fluid. The plumelet is associated with a dominant counterclockwise (marked 1 in
figure 6d) fluid motion on the outboard side and a weak clockwise vortex ring on
the inboard. The plumelet is associated with a strong upward moving fluid motion,
which at t = t0 + 3 is comparable to fluid velocity in the main ascending column. By
t = t0 + 4, the plumelet and the associated vortex ring have moved up. The periodic
instability of the lapping flow along the heat source results in the plumlet and the
associated strong updraft is the source of the secondary peak observed in figure 1
for the vertical velocity profiles close to the heat source. Over time, the plumelet ring
converges towards the axis and merges with the central column. In the process, the
inboard vortex ring disappears and the remaining vortex ring on the outboard side
of the plumlet survives and is seen in figure 4 as the vortex ring that surrounds the
main ascending column of fluid.
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Figure 6. Visualization of instantaneous temperature T and velocity vector field in the vicinity
of heat source and its change with regard to time. (a) t = t0, (b) t0 + 1, (c) t0 + 2, (d) t0 + 3,
(e) t0 + 4, (f ) t0 + 5.

Now we will focus on the transition from laminar to turbulent state in the plume.
In general, transition is considered to be located when the fluctuating quantities
(temperature and/or velocity component) reach a maximum along the centreline. In
the fully turbulent regime, a constant level of fluctuation intensity is observed. The
transition process and the location of fully developed turbulence can be expected to
depend on the details of the heat source.Brahimi & Doan(1985) found that the shape
of the heat source was important and strongly influenced the transition mechanisms.
For instance, a hemispherical heat source will accelerate the transition process more
quickly than in a pure thermal arising from a flat source. If we take into account
all available data on transition, the fully turbulent region is generally observed to set
from 3D∗ to 5D∗ above the heat source. Pham et al. (2005) performed an experimental
investigation of a pure thermal plume arising from a flat heated disk and observed
maximum fluctuation in thermal and velocity fields to occur close to 3.5D∗. In order
to ensure the adequacy of spatial and temporal resolution, we computed turbulent
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Figure 7. Temporal power spectrum of the temperature fluctuations ET (f ) for two locations:
(a) at plume axis (x = 0, y = 0, z = 6) and (b) outside plume boundary (x = 0.5, y = 0, z = 6).

dissipation, ε, and turbulent kinetic energy, u′
iu

′
i , from which the Kolmogorov length

scale, η, Kolmogorov time scale, τ , were computed at several different points and
the smallest Kolmogorov scales were compared with the physical mesh size and
computational time step. The ratio between physical mesh size and Kolmogorov
scale was observed to be about 1.02, and therefore the mesh size was considered
fine enough to capture the entire range of flow scales (Kim, Moin & Moser 1987;
Moin & Mahesh 1998). A second test, which is specific to buoyant plumes, consists in
analysing temperature fluctuations and their spectral energy distributions with regard
to the radial position. Energy distributions were plotted against non-dimensional
frequency, St = f ∗D∗/U ∗

0 . On the plume axis at z = 6 (figure 7a), the power spectra
of temperature fluctuations shows the expected −5/3 Kolmogorov power law. Away
from the axial location, at a radial location close to the outer edge of the plume
boundary (x = 0.5, y =0, z =6), a similar trend is observed in the spectral distribution
of thermal fluctuation (figure 7b). The inertial–convective regime with the −5/3 decay
is still present, but is immediately followed by a greater decay of −3 power law. This
is a specific feature of buoyant jet flows and it characterizes the inertial–diffusive
subrange (List 1982; Kotsovinos 1991; Noto, Teramoto & Nakajima 1999). Buoyancy
strongly affects the turbulence production, distribution and dissipation mechanisms
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Figure 8. Non-dimensional turbulent intensity of (a) axial, (b) radial and (c) circumferential
velocity component and (d) temperature profiles for two locations in the turbulent region.

so that the jump from the −5/3 to −3 subrange corresponds to a stronger energy
feeding owing to the large plume vortices, which are driven by the buoyancy force.

In the turbulent region, decay of centreline mean temperature and vertical velocity
components (shown in figure 2) were found to follow the −1/3 and −5/3 power
laws predicted by self-similar theories. Figure 8 presents normalized root-mean
square profiles of vertical, radial and circumferential velocity components as well
as temperature for two different vertical locations. The results shown are both time
and circumferentially averaged and are normalized by the mean centreline vertical
velocity, uz,c, (the subscript c corresponds to the plume centreline). Radial distances
were normalized by the momentum length scale, δ(z), which will be defined later in
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(8). The corresponding experimental data extracted from Pham et al. (2005) were
likewise plotted in the figure. The radial and circumferential turbulent intensities are
similar, while the axial velocity fluctuations are about 30 % larger. George et al.
(1977) experimentally studied a buoyant jet and put forward the hypothesis that
the peak turbulent intensities were located off-axis. Both the computational and the
experimental results exhibit this behaviour. The amplitudes of radial, circumferential
and axial fluctuation levels reported in the literature are generally in the 15 to 30 %
range and the present results are well within that. Temperature fluctuation profiles
reveal a slight off-axis peak of about 36 %, whereas in the literature slightly higher
thermal fluctuation levels of about 40 % and 42 % were reported by George et al.
(1977) and Papanicolou & List (1988). Temperature fluctuations are always found to
be greater than the velocity fluctuations and, as reported by Agator & Doan (1982),
turbulence intensities are linked to overall plume development and heat source geome-
try. The configuration of the heat source in the present simulations is identical to those
used in the experiments of Pham et al. (2005), thus resulting in satisfactory agreement.

3.3. Pulsating mechanism

Interaction between the ascending hot fluid and its surroundings is essential to the
development of the plume. When plumes or buoyant jets arise in an otherwise
quiescent environment, the ascendant column of fluid is separated from the stationary
ambient fluid by a region of strong shear. The vortex sheet develops in an unstable
way and rolls up into a sequence of discrete vortex rings. Such vortices interact by
rolling around each other and as they do so, they engulf irrotational ambient fluid
and incorporate it into the turbulent ascending flow. Thus, these vortices play a key
and direct role in the entrainment mechanism. Sreenivas & Prasad (2000) analysed a
pure plume and showed that as the potential energy stored in unstable stratification
is released, plumes can entrain more than jets. According to Dimotakis (1986),
the entrainment process may be divided into steps. First, in the induction phase,
ambient fluid is inducted into the ascending turbulent fluid. Turbulent straining of
the inducted fluid then reduces its spatial scale to a small value at which viscous
diffusion dominates. The inducted fluid then mixes at the molecular level with the
turbulent flow. Sreenivas & Prasad (2000) emphasize that the key mechanism in the
entrainment process is induction-based and that mixing at the larger scales controls
plume development. The entrainment process is sensitive to the development of large
scales and their unsteady dynamics. For example, spatial development of pure thermal
turbulent plumes was analysed under a rotating condition for the heat source by Pham
et al. (2006b). Close to the source, the Coriolis effect strongly alters the plume shape,
and significantly increases entrainment; but above a threshold elevation, the thermal
plume virtually forgets the rotation effect and behaves as would a regular thermal
plume. Similar sensitivity in entrainment prediction was observed in the coalescence
of two turbulent plumes modelled by Kaye & Linden (2003).

In order to extract large-scale coherent structures from the turbulent flow field, we
first define a length scale based on a two-point correlation. We have computed the
two-point correlation of vertical velocity along the plume centreline as follows:

R11(z, dz) =
u′

z(z)u
′
z(z + dz)√

u
′2
z (z)

√
u

′2
z (z + dz)

(5)

in which subscript 1 designates the vertical velocity component and dz corresponds
to the vertical distance between the two points along the plume axis. The integral
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Figure 9. Spatial correlation coefficients R11 of vertical velocity at two different positions on
the plume axis in transition and turbulent region and evolution of integral length scale l with
regard to z along the plume axis.

length scale is subsequently defined based on the two-point correlation as:

l =

∫ ∞

0

R11(z, dl) dl. (6)

The integral length scale was computed all along the vertical plume axis and its change
with z is shown in figure 9. Also shown in the figure are two-point correlations at
two different elevations from the heat source. Three different zones can be identified.
In the region close to the heat source dominated by the periodic puffing of vortical
structures (z � 2.5) the spatial correlation rapidly decays so that l remains small. This
region corresponds to development of the ascendant fluid motion, and large structures
at the periphery of the main ascendant current evolve under strong acceleration. As
a consequence, vortical structures rapidly evolve and merge with the main stream, as
shown in figure 6, and spatial correlations rapidly decorrelate. In the transition region
(2.5 � z � 4.0), structures are somewhat altered during their upward convection, but
they retain sufficient integrity to maintain a higher level of spatial correlation. In
the fully turbulent region (z � 4.0) the coherent vortical structures undergo rapid
evolution and break down to finer-scale structures leading to a reduction in the
correlation length scale. In the fully turbulent region, the integral scale of correlation
remains almost constantly close to l ∼ 0.35. In the transitional region, a second peak
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is observed in the two-point correlation at a vertical separation of dz =1.75, which
corresponds to the spacing between the adjacent coherent structures. In the turbulent
region, the correlation decays to zero faster, but a second peak is still observed at
a larger vertical separation of dz = 2.2. The interpretation is that the vestiges of the
periodic large-scale coherent vortex rings are still present in the turbulent regime, but
the small-scale turbulent correlation decays faster.

In this part of our study, we have been focusing on the dynamics of the large-scale
coherent structures. As illustrated in figure 4, straightforward visualization of the
present highly resolved simulation will result in a complex vortical structure that
highlights the wide range of length scales present. We will apply a low-pass filter
to the data in order to extract only the large-scale vortical structures. To do so, a
Gaussian filter is defined as:

G�(x) =

√
6

π�
2
exp(−6x2/�

2
) (7)

with � the filter width. As in large-eddy simulation methodology G�(x) was applied
to direct numerical results in order to separate the large-scale motion. It should be
emphasized that the simulations resolved all the length scales and that the spatial
filter was applied only a posteriori. Other spatial filters such as a box or a top-hat filter
(Meneveau & Katz 2000; da Silva & Métais 2002) may likewise be applied. Here we
have chosen a Gaussian filter, since other filters were observed to yield similar results.
Irrespective of the filter employed, the width of the filter, �, is the critical parameter
controlling the extracted large-scale structures. Given that the filtering procedure is
designed to extract coherent structure and to assess its dynamics, we have chosen
the filter width based on a two-point correlation length scale such as l = �= 0.35.
Thus, large-scale turbulent motions are defined to be those larger than the correlation
length scale, while those smaller are deemed subscale.

Here we use the swirling strength, λci , defined as the imaginary part of the complex
conjugate eigenvalues of the local velocity gradient tensor, to extract the vortical
structure from the filtered large-scale flow field (Zhou et al. 1999; Chakraborty et al.
2005). If at any given point the velocity gradient tensor has all three real eigenvalues,
then locally the flow is not swirling and λci is set to zero. First, in order to shed
light on the flow complexity, the swirling strength was computed on both the raw
and filtered data and figure 10 reveals an isosurface contour of λ2

ci that corresponds
to 40 % of the maximal value in the turbulent region (4.0 � z � 6.0). A wide range
of length scales and hairpin-like vortical structures surrounding ascendant plume
motion can be observed in the computed flow. Even though the filtering process has
eliminated small-scale structures, the extracted large-scale structures look complex
and their dynamics can be expected to be non-trivial. To highlight the induced fluid
motion, the instantaneous velocity vectors are plotted on two different (x, y)-planes at
z = 5.0 and 5.7, i.e. at locations, respectively, below and above the rolled-up structure
designated as ‘1’ in figure 10(b). The vector plots clearly reveal the clockwise and
counterclockwise circulating regions, which indicate the spiralling nature of the plume
(Cortese & Balachandar 1993). Stagnation points are located close to the plume
boundary and correspond to cold fluid flowing in from the environment process
and spreading horizontally. However, at z = 5.0, most of the velocity vectors are
inward-oriented whereas at z = 5.7, most of the velocity vectors are outward-oriented
with regard to the plume axis. Such instantaneous velocity behaviours are intimately
linked to the hairpin-like vortex presence. During its convection and rotation, the
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vortex rings have a tendency to entrain fluid at the bottom and eject fluid out of
the plume at the top of the structure. Thus, expansion of a pure thermal plume
occurs in terms of instantaneous lateral exchange between the ascendant flow and
its vicinity, driven by time-dependent expulsion and ingestion of fluid by the vortical
structures. Such mechanisms were discussed by Basu & Narasimha (1999) in their
study of reduction of entrainment by addition of buoyancy away from the source by
volumetric heating. We may expect additional buoyancy in a plume to provide local
acceleration of ascendant flow, which in turn should favour entrainment. However,
as clearly observed by Sreenivas & Prasad (2000), addition of off-source buoyancy
entails a decrease of the resulting angular velocity, i.e. an increase of the turnover
time resulting in a decrease of entrainment.

In order to appreciate better the relation between coherent vortical structures and
entrainment, it is necessary to define a local instantaneous entrainment coefficient. The
capacity of buoyant plumes and jets to attract quiescent fluid from their immediate
surroundings has traditionally been deduced from averaged fields and the entrainment
coefficient on an average basis is defined as the ratio between mean inward radial
velocity outside the plume and mean vertical velocity on the axis. Such a definition is
naturally convenient from an experimental point of view, since the radial and vertical
mass flow rate fluctuations are averaged out. Dibble et al. (1987) estimated the
contribution of fluctuating terms to mass flux integral to be equal to approximately
20 % of the whole mass flow rate. To estimate entrained fluxes precisely, a direct
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measurement method is required along the lines of that of Ricou & Spalding (1961).
They measured the entrainment flux of a turbulent jet by surrounding the jet with
a porous-walled cylindrical chamber equipped to measure pressure drop, which was
expected to be directly proportional to entrained mass flow rate. However, it is not
clear whether such an experimental set-up will guarantee accurate measurements, and
not rather tend to worsen flow-field integrity. Pham et al. (2005) performed direct
entrainment measurements in turbulent pure plume through instantaneous three-
dimensional velocity measurements. The method consists in measuring, as accurately
as possible, the velocity component in the plume periphery, i.e. regions where ambient
fluid is engulfed into the ascendant column. It is non-trivial to define the border
between the ascendant flow field and its surroundings. The length scale, b, as defined
by Fannelop & Webber (2003) corresponds to the distance from the axis at which
velocity amplitude is 1/e of that on the axis. At that location, flow field is still mainly
vertically oriented and is therefore not an ideal location for estimating mass flow rate
exchange between the plume and its immediate surroundings. To locate the plume
border, Pham et al. (2005) defined a momentum balance length scale, δ(z), as:

δ2(z) =

2

(∫ ∞

0

ūzr dr

)2

∫ ∞

0

ū2
zr dr

. (8)

While the vertical variation of δ(z) follows that of b(z), it is observed to be sufficiently
far away from the axis to study mass flow exchange between ascendant motion and
its environment. In addition, it is worth noting that the radial velocity component
decays as a function of 1/r by continuity. So, the precise location of the border does
not directly interfere with the accuracy of the entrainment mass flow rate estimation
since rur remains at a constant level. Based on such arguments, the instantaneous
entrainment coefficient is defined as:

α(t, z) =
m(t, z)

ρ∞uz(z)
, (9)

in which m(t, z) corresponds to the instantaneous mass flux rate per unit surface area,
integrated around the circumference of the ascendant flow field. It is also important
to underline that when dealing with instantaneous data, fluid may enter into the
plume as well as being ejected from it.

To explore the entrainment mechanism as the turbulent coherent structures advect
and deform, figure 11 shows the isosurface of λ2

ci equal to 40 % of the maximum
value at four different time instances. Also plotted on the side are vertical profiles of
instantaneous entrainment coefficient at these time instances. Wide variations in the
instantaneous entrainment coefficient are detected. For instance, at t = t0, α reaches a
peak level of 0.23 just under the large structure identified in the turbulent plume and
denoted in the figure as ‘1’. Away from the peak, both above and below, low levels
of α close to 0.04 are detected and these minimum locations coincide with spatial
locations that are to be found just above the vortical structures. As soon as new
coherent structures advect into position (such as that designated by ‘2’ in figure 11),
a local increase of α is realized. Following the structure–entrainment rate evolution
with time, the vertical evolution of structures ‘1’ and ‘2’ is tracked by spatial evolution
of the α peak. Furthermore, at t = t0 + 2, structure ‘2’ is subjected to a vertical
stretching effect; and as a consequence it spatially enlarges the corresponding α peak.
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Sreenivas & Prasad (2000) advanced a vortex dynamic balance model for entrainment
in jets or plumes, where entrainment depends on overall circulation, which increases
only marginally. However, as seen in the figure, it is the local instantaneous evolution
of coherent structures that literally drives the dominant entrainment process. It has
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Figure 12. Statistical distributions of entrainment coefficient for several vertical positions
in the z-direction. (a) z = 1, (b) 2, (c) 3, (d) 4.

been clearly observed in planes perpendicular to the plume axis that the in-plane
velocities are mainly inward-oriented, highlighting local and intermittent engulfment
of ambient fluid at the bottom of the coherent vortical structures. On the contrary,
expulsion of plume fluid occurs just above structures. Plume evolution is mainly driven
by these two different steps, i.e. expulsion and contraction mechanisms. The minimum
of entrainment arises during the expulsion phase, while the plume entrains a maximum
amount of ambient fluid during the contraction phase. These two mechanisms actually
correspond to the pulsating behaviour that is often described in buoyant jets or
plumes. For example, the pulsating mechanism in a turbulent plume was reported
in experiments with instantaneous three-dimensional velocity measurements (Pham
et al. 2005). The present DNS results allow us to further quantitatively depict this
entrainment–coherent structure interaction.

As entrainment is closely linked to vortex dynamics along the plume periphery,
it is expected that wide α variation will occur over time. Entrainment mechanisms
and the proper estimation of the entrainment coefficient have been studied actively.
The value of α classically ranges from 0.08 and 0.12 in the literature. As shown in
figure 11, instantaneous α may reach levels almost three times higher than the average
level. Statistics of the instantaneous entrainment coefficient were studied and their
distributions have been plotted for several z locations (figure 12). Close to the heat
source (z = 1.0), the distribution is very wide and is centred approximately around
0.16. As discussed above, the region close to the heat source is mainly driven by the
puffing phenomenon, i.e. large eddies are generated and behave as connected vortex
rings around the main ascendant current. In addition, the inward motion of fluid
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driven by continuity to balance the ascendant motion contributes to the entrainment
of the plume close to the bottom. At higher vertical positions, z = 2.0 and to a lesser
extent z = 4.0, distribution of α levels is more and more centred around a value close
to 0.12 and fluctuations around this level weaken. In the fully turbulent area (z = 6.0),
the distribution of entrainment coefficient peaks at around 0.1, and is narrower.
The distributions of entrainment coefficient at other elevations in the fully turbulent
regime are similar. From such a distribution, an average entrainment coefficient, ᾱ,
was computed and shown in figure 13 as a function of elevation. Also plotted in the
figure are average entrainment coefficients obtained in the experiments of Pham et al.
(2005). Good agreement between experimental and DNS results can be observed over
the entire elevation, including the region close to the heat source.

4. Conclusion
We examine the development of a thermal plume originating from a localized heat

source using direct numerical simulation. The Reynolds number of the plume, based
on source diameter and the characteristic buoyancy velocity, is chosen to be 7700,
which is sufficiently large that the flow transitions to a fully turbulent state. The
corresponding maximum Grashof number, based on the height of the computational
domain, is 2.2 × 1010. A highly resolved grid of 622 million points is used and a
posteriori tests confirm that the grid resolution is fine enough to resolve fully all
turbulent scales in the plume down to the Kolmogorov scale.

We pay close attention to the flow field in the vicinity of the heat source and
in this region numerical simulation exhibits features that are specific to thermal
plumes arising from a finite-sized source. In particular, we observe the plume to
form a neck, which corresponds to a minimum plume cross-section and a maximum
vertical velocity. Following Fannelop & Webber (2003), we compare the numerical
simulation results with analytical models. Here, at the source, only heat is added
with no mass or momentum addition and accordingly sufficiently for away from
the source, the vertical evolution of the mass, momentum and buoyancy fluxes
computed from the simulation are in good agreement with the theoretical linear
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relation between q2 and f 5/2 predicted for a pure thermal plume (here q and f are the
mass and momentum fluxes). However, close to the source, the numerical data exhibit
a nonlinear dependency of q2 on f 5/2. The difference signifies a departure from the
self-similar behaviour in the case of a finite-sized heat source.

Investigation of the time-dependent flow behaviour in the vicinity of the source
illustrates a puffing phenomenon. The behaviour arises from the periodic development
of vortical structures close to the source. Such structures literally lean up against the
heat source before being propelled in a vertical direction. This process is driven
by periodic roll-up of the interfacial shear between the ascending column of fluid
and the ambient surroundings into coherent vortex rings. The near-source region is
then characterized mainly by non-stationary convection of vertical structures, which
are highly three-dimensional even as they form close to the heat source. The vortex
ring ascends with the plume and at a non-dimensional elevation of about z ∼ 2
it strongly interacts and destabilizes the central column of ascending fluid and a
complex turbulent flow subsequently arises. In the transitional region, a second peak
is observed in the two-point correlation at a vertical separation of dz =1.75, which
corresponds to the spacing between the adjacent coherent structures. In the turbulent
region, the correlation decays to zero faster, but a second peak is still observed at
a larger vertical separation of dz = 2.2. The interpretation is that the vestiges of the
periodic large-scale coherent vortex rings are still present in the turbulent regime, but
the small-scale turbulent correlation decays faster.

In order to capture the dynamics of the large-scale coherent structures, we first
apply a low-pass Gaussian spatial filter to the DNS data. The specific filter width
was chosen equal to the integral length scale of the two-point correlation in the fully
developed turbulent region. The vortical coherent structures were identified by plotting
the isosurface of the imaginary part of the complex eigenvalue of the velocity gradient
tensor. By simultaneously presenting the large-scale vortical structures and the local
instantaneous entrainment, we establish a direct link between the two. Above the
spatial location of the coherent structures, it is observed that a contraction mechanism
emerges and underscores spatially localized and instantaneous entrainment. Below
the structure, an expulsion mechanism ejects fluid from the core of the plume. From
data obtained, we have demonstrated that such instantaneous mechanisms drive the
entrainment process and that the instantaneous entrainment coefficient shows large
variation in both time and space with local values up to three times higher than
the average entrainment level. It is the net balance which provides the actual mean
entrainment aptitude of the plumes, and the mean entrainment coefficient computed
from the DNS data is in agreement with recent experimental measurements.

Computations were carried out at the Institut de Développement et des Ressources
en Informatique Scientifique (IDRIS), the computational centre of the Centre National
de la Recherche Scientifique (CNRS). The authors wish to warmly thank the head of
IDRIS department, V. Alessandrini, for his unstinting support.

REFERENCES

Agator, J. M. & Doan, K. S. 1982 Turbulence structure of axisymmetric thermal plumes. Mech.
Res. Commun. 9, 159–164.

Bastiaans, R. J. M., Rindt, C. C. M., Nieuwstadt, F. T. M. & Van Steenhoven, A. A. 2000 Direct
and large-eddy simulation of the transition of two- and three-dimensional plane plumes in a
confined enclose. Intl J. Heat Mass Transfer 43, 2375–2393.



122 F. Plourde, M. V. Pham, S. Doan Kim and S. Balachandar

Basu, A. J. & Narasimha, R. 1999 Direct numerical simulation of turbulent flows with cloud-like
off-source heating. J. Fluid Mech. 385, 199–228.

Bill, R. R. & Gebhart, B. 1975 The transition of plane plumes. Intl J. heat Mass Transfer 18,
513–526.

Billeter, L. & Fannelop, T. K. 1989 Gas concentration over an underwater gas release. Atmos.
Environ. 23, 1683–1694.

Bhat, G. S. & Narasimha, R. 1996 Volumetrically heated jet: large eddy structure and entrainment
characteristics. J. Fluid Mech. 329, 303–330.

Brahimi, M. & Doan, K. S. 1985 Interaction between two turbulent plumes in close proximity.
Mech. Res. Commun. 12, 149–155.

Cantero, M. I., Balachandar, S., Garcia, M. H. & Ferry, J. P. 2006 Direct numerical simulations
of planar and cylindrical density currents. J. Appl. Mech. 73, 923–930.

Cantero, M. I., Lee, J. R., Balachandar, S. & Garcia, M. H. 2007 On the front velocity of gravity
currents. J. Fluid Mech. 586, 1–39.

Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 On the relationships between local vortex
identification schemes. J. Fluid Mech. 535, 189–214.

Cook, A. W. & Riley, J. J. 1996 Direct numerical simulation of a turbulent reactive plume on a
parallel computer. J. Comput. Phys. 129 , 263–283.

Cortese, T. & Balachandar, S. 1993 Vortical nature of thermal plumes in turbulent convection.
Phys. Fluids A 5, 3226–3232.

Desrayaud, G. & Lauriat, G. 1993 Unsteady unconfined buoyant plumes. J. Fluid Mech. 252,
617–646.

Dibble, R. W., Schefer, R. W., Chen, J. Y. & Hartmann, V. 1987 Velocity and density measurements
in a turbulent nonpremixed flame with comparison to numerical model predictions. Sandia
Rep. SAND85-8233. UC-304.

Dimotakis, P. E. 1986 Two-dimensional shear-layer entrainment. AIAA J. 24, 1791–1796.

Fannelop, T. K. & Webber, D. M. 2003 On buoyant plumes rising from area sources in a calm
environment. J. Fluid Mech. 497, 319–334.

George, W. K., Alpert, R. L. & Tamanini, F. 1977 Turbulence measurements in an axisymmetric
experiment on a round turbulent buoyant plume. Intl J. Heat Mass Transfer 20, 1145–1154.

Hunt, G. R. & Kaye, N. G. 2000 Virtual origin correction for lazy turbulent plumes. J. Fluid Mech.
435, 377–396.

Hunt, J. C. R., Wray, A. A. A. & Moin, P. 1988 Eddies; stream and convergence zones in turbulent
flows. Proc. Summer Program of the Centre for Turbulence Research, NASA Ames/Stanford
University, pp. 193–207.

Kaye, N. B. & Linden, P. F. 2003 Coalescing axisymmetric turbulent plumes of vortex. J. Fluid
Mech. 502, 41–63.

Kim, J., Moin, P. & Moser, R. D. 1987 Turbulent statistics in fully developed channel flow at low
Reynolds number. J. Fluid Mech. 177, 133–166.

Lessani, B. & Papalexandris, M. V. 2006 Time-accurate calculation of variable density flows with
strong temperature gradients and combustion. J. Comput. Phys. 212, 218–246.

Liedtke, J. & Schatzmann, M. 1997 Dispersion from strongly buoyant sources. Final Rep. EU-
Project EV5V-CT-93-0262. University of Hamburg, Meteorological Institute.

List, E. J. 1982 Turbulent jets and plumes. Annu. Rev. Fluid Mech. 14, 189–212.

Kotsovinos, N. E. 1991 Turbulence spectra in free convection flow. Phys. Fluids 3, 163–167.

Majda, A. & Sethian, J. 1985 The derivation and numerical solution of the equations for zero
mach number combustion. Combust. Sci. Technol. 42, 185–205.

Meneveau, C. & Katz, J. 2000 Scale invariance and turbulence models for large-eddy simulation.
Annu. Rev. Fluid Mech. 32, 1–32.

Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu.
Rev. Fluid Mech. 30, 539–578.

Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from
maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 1–23.

Nakagomeka, H. & Hirata, K. 1976 The structure of turbulent diffusion in an axi-symmetrical
thermal plume. Proc. ICHMT Conference on Turbulent Buoyant Convection, pp. 361–372.

Noto, K., Teramoto, K. & Nakajima, T. 1999 Spectra and critical Grashof numbers for turbulent
transition in a thermal plume. J. Thermophys. Heat Transfer 13, 82–90.



Direct numerical simulations of a rapidly expanding thermal plume 123

Papanicolou, P. N. & List, E. J. 1988 Investigations of round vertical turbulent buoyant jets.
J. Fluid Mech. 195, 341–391.

Pham, M. V., Plourde, F. & Doan, K. S. 2005 Three dimensional characterization of a pure thermal
plume. J. Heat Transfer 127, 624–636.

Pham, M. V., Plourde, F. & Doan, K. S. 2006a Effect of swirl on pure turbulent thermal plume
development. Intl J. Heat Fluid Flow 27, 502–513.

Pham, M. V., Plourde, F., Doan, K. S. & Balachandar, S. 2006b Large-eddy simulation of a pure
thermal plume under rotating conditions. Phys. Fluids 18, 1–18.

Rooney, G. G. & Linden, P. F. 1996 Similarity considerations for non-Boussinesq plumes in an
unstratified environment. J. Fluid Mech. 318, 237–250.

Ricou, F. P. & Spalding, D. B. 1961 Measurements of entrainment by axisymmetrical turbulent
jets. J. Fluid Mech. 11, 21–32.

Shabbir, A. & George, W. K. 1994 Experiments on a round turbulent buoyant plume. J. Fluid
Mech. 275, 1–32.
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